21 research outputs found

    Inverse source problems for degenerate time-fractional PDE

    Full text link
    In this paper, we investigate two inverse source problems for degenerate time-fractional partial differential equation in rectangular domains. The first problem involves a space-degenerate partial differential equation and the second one involves a time-degenerate partial differential equation. Solutions to both problem are expressed in series expansions. For the first problem, we obtained solutions in the form of Fourier-Legendre series. Convergence and uniqueness of solutions have been discussed. Solutions to the second problem are expressed in the form of Fourier-Sine series and they involve a generalized Mittag- Leffler type function. Moreover, we have established a new estimate for this generalized Mittag-Leffler type function. The obtained results are illustrated by providing example solutions using certain given data at the initial and final time.Comment: 12 pages, 8 figure

    Inverse Problems of a Fractional Differential Equation with Bessel Operator

    Full text link
    Inverse initial and inverse source problems of a time-fractional differential equation with Bessel operator are considered. Results on existence and uniqueness of solutions to these problems are presented. The solution method is based on series expansions using a set of Bessel functions of order zero. Convergence of the obtained series solutions is also discussedComment: 11 pages, No figure

    Aspects of three-dimensional MHD : magnetic reconnection and rotating coronae

    Get PDF
    Solutions of the magnetohydrodynamic (MHD) equations are very important for modelling laboratory, space and astrophysical plasmas, for example the solar and stellar coronae, as well as for modelling many of the dynamic processes that occur in these different plasma environments such as the fundamental process of magnetic reconnection. Our previous understanding of the behavior of plasmas and their associated dynamic processes has been developed through two-dimensional (2D) models. However, a more realistic model should be three-dimensional (3D), but finding 3D solutions of the MHD equations is, in general, a formidable task. Only very few analytical solutions are known and even calculating solutions with numerical methods is usually far from easy. In this thesis, 3D solutions which model magnetic reconnection and rigidly rotating magnetized coronae are presented. For magnetic reconnection, a 3D stationary MHD model is used. However, the complexity of the problem meant that so far no generic analytic solutions for reconnection in 3D exist and most work consists of numerical simulations. This has so far hampered progress in our understanding of magnetic reconnection. The model used here allows for analytic solutions at least up to a certain order of approximation and therefore gives some better insight in the significant differences between 2D and 3D reconnection. Three-dimensional numerical solutions are also obtained for this model. Rigidly rotating magnetized coronae, on the other hand, are modeled using a set of magnetohydrostatic (MHS) equations. A general theoretical framework for calculating 3D MHS solutions outside massive rigidly rotating central bodies is presented. Under certain assumptions, the MHS equations are reduced to a single linear partial differential equation referred to as the fundamental equation of the theory. As a first step, an illustrative case of a massive rigidly rotating magnetized cylinder is considered, which somehow allows for analytic solutions in a certain domain of validity. In general, the fundamental equation of the theory can only be solved numerically and hence numerical example solutions are presented. The theory is then extended to include a more realistic case of massive rigidly rotating spherical bodies. The resulting fundamental equation of the theory in this case is too complicated to allow for analytic solutions and hence only numerical solutions are obtained using similar numerical methods to the ones used in the cylindrical case

    Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    No full text
    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.</p
    corecore